首页> 外文OA文献 >An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing Systems
【2h】

An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing Systems

机译:一种不确定性意识的流优化配置方法   加工系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Finding optimal configurations for Stream Processing Systems (SPS) is achallenging problem due to the large number of parameters that can influencetheir performance and the lack of analytical models to anticipate the effect ofa change. To tackle this issue, we consider tuning methods where anexperimenter is given a limited budget of experiments and needs to carefullyallocate this budget to find optimal configurations. We propose in this settingBayesian Optimization for Configuration Optimization (BO4CO), an auto-tuningalgorithm that leverages Gaussian Processes (GPs) to iteratively captureposterior distributions of the configuration spaces and sequentially drive theexperimentation. Validation based on Apache Storm demonstrates that ourapproach locates optimal configurations within a limited experimental budget,with an improvement of SPS performance typically of at least an order ofmagnitude compared to existing configuration algorithms.
机译:由于可能影响其性能的大量参数以及缺乏预测变化影响的分析模型,为流处理系统(SPS)寻找最佳配置是一个棘手的问题。为了解决这个问题,我们考虑了调整方法,在这种方法中,实验人员只能获得有限的实验预算,并且需要仔细分配此预算以找到最佳配置。我们在此设置中提出了贝叶斯配置优化优化(BO4CO),这是一种自动调整算法,利用高斯过程(GP)来迭代地捕获配置空间的后验分布并顺序驱动实验。基于Apache Storm的验证表明,我们的方法可以在有限的实验预算内找到最佳配置,与现有配置算法相比,SPS性能通常至少提高了一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号